Stammdaten-Management klingt – auch als MDM oder Master Data Management – nicht wirklich spannend. Muss man sich in einer Zeit, in der sich das Wissen etwa alle fünf Jahre verdoppelt, heute noch mit dieser eigentlich „trivialen“ Thematik beschäftigen?
Dass korrekte Daten nach wie vor ein komplexes Thema sind, zeigt die betriebliche Praxis: Marketing-Kampagnen bringen nicht den gewünschten Erfolg, da E-Mail-Adressen nicht sauber gepflegt sind, Verträge kommen als unzustellbar zurück und Dubletten verursachen unnötig hohe Kosten. System-Migrationen scheitern häufig, da Felder des Altsystems aufgrund mangelnder Flexibilität des Datenmodells missbraucht wurden, was die korrekte Zuordnung der Daten erschwert. [1] Es gilt die Formel:
Gesamtqualität (GQ) =
Systemqualität (SQ) x Anwenderqualität (AQ)
Sie verdeutlicht, dass das Stammdaten-Management zwar mit einer qualitativen Software unterstützt werden kann, aber die Anwenderqualität, also das Bewusstsein über die Bedeutung richtiger und die fatalen Ursachen falscher Stammdaten, ebenso entscheidend ist für die Gesamtqualität. Nur wenn SQ und AQ einen Wert möglichst nahe an 1 erreichen, kann eine ansprechende Gesamtqualität erlangt werden (Ziel: GQ = 1).
Informationen sind nur dann brauchbar, wenn sie sich durch entsprechende Aktualität, Konsistenz und einheitliche Darstellung auszeichnen. Die Sicherung der Datenqualität ist somit organisatorische Herausforderung, die am Entstehungs- und Verwendungsort der Stammdaten in den Fachbereichen gemeistert werden muss.
Kosten guter Datenqualität umfassen Kosten für Fehlererkennung und -vorbeugung. Dazu gehören neben den Hard- und Softwarekosten zur Unterstützung des Datenqualitätsmanagements auch die Personalkosten für die Erarbeitung von Datenanforderungen. Dem gegenüber stehen die Kosten schlechter Datenqualität, d.h. Kosten, die durch Datenqualitätsprobleme verursacht werden. Dazu gehören unter anderem:
Für ein professionelles Stammdaten-Management bietet sich eine Funktionsarchitektur an, welche die Ebenen Strategie, Organisation und Systeme adressiert.
Die Unternehmensberatung Roland Berger führt folgende Aspekte als entscheidende Erfolgsfaktoren an:
Strategie – Management Buy-In: Stammdaten-Management und die damit einhergehende Datenharmonisierung sind langfristige Programme, die häufig prozessuale und organisatorische Veränderungen erfordern. Starke Zustimmung und Unterstützung des Managements sind eine fundamentale Voraussetzung für den langfristigen und nachhaltigen Erfolg.
Organisation – Stammdaten-Management ist kein reines IT-Projekt: Das Vorhaben bildet ein Querschnittsthema im Unternehmen. Daher sind Tätigkeiten, Prozesse, Funktionalität und Strukturen des Stammdaten-Managements über die unterschiedlichen Geschäftsbereiche hinweg zu koordinieren. Da Stammdaten immer vom Business und nicht von der IT verwaltet werden, ist Stammdaten-Management primär eine Aufgabe der Fachabteilungen bzw. aller auf seine Systeme zugreifenden Nutzer am Point of Sale (POS). Gegebenenfalls ist dafür ist ein eigenes Führungssystem sowie eine spezifische Ablauf- und Aufbauorganisation einzurichten.
Unbedingt hinzu kommen sollten laufende Fortschritts- und Qualitätskontrollen: Um den Gesamtfortschritt zu messen und die Datenqualität nachhaltig zu verbessern, sollten Kennzahlsysteme und Kontrollen etabliert werden. Die Praxis zeigt, dass das ausschließliche Aufstellen von Regeln häufig nicht ausreicht. Erst mit dem Einsatz von Kontrollmechanismen lassen sich die gewünschten Effekte erzielen. Einfache Messgrößen lassen sich schnell entwickeln, wie z. B. die Füllquote bei optionalen Feldern. Generell gilt: Betroffene zu Beteiligten machen. Wenn Ideen der Fachbereiche berücksichtigt werden, so ist dies wiederum ein Wertbeitrag zur erhöhten Beachtung der Eingaberegeln.
Befragt man Unternehmen, so schätzen diese realistisch die Anstrengungen zur Erhaltung der Datenqualität eher hoch ein.
Es gilt, genaue Prozesse für die Erfassung von Datenänderungen (z. B. Umzug eines Kunden) aufzusetzen und den Mitarbeitern einfache Prüf-, Korrektur- und Ergänzungsmöglichkeiten für die von ihnen verantworteten Datenbestände einzurichten. Nur so kann sicher gestellt werden, dass die Anstrengungen, die in die Datenqualität durch Einsatz von Ressourcen und Budget investiert wurden, nicht umsonst waren.
Für erfolgreiches Stammdaten-Management lassen sich folgende Motive anführen: [5]
Seit vielen Jahren setzen wir uns zum Ziel, unsere Kunden bei dem aufwändigen Prozess der Beschaffung und qualitativen Aufbereitung der benötigten Datenbasis zur Bearbeitung von Kreditanträgen - vom Angebot an den Kunden über den Antrag mit vollautomatischer Kreditentscheidung und -bearbeitung bis hin zur -vertragsverwaltung, effektiv zu unterstützen.
Dies ermöglichen einerseits hilfreiche Funktionalitäten in unserer Credit Management Solution (afb-CMS) und andererseits unsere umfassenden Daten-Services.
Ausgewählte Funktionalitäten für effiziente Datenmanagement-Workflows:
1 Die Thematik lässt sich in ihrer Komplexität steigern, wenn nicht ein unternehmensweites, sondern auch ein zwischenbetriebliches Stammdatenmanagement zu betrachten ist.
2 Rolf Scheuch: Datenqualität sichern – Stammdaten-Management braucht Ordnung; www.computerwoche.de/a/stammdaten-management-braucht-ordnung,2516260
3 Christian Fürber: Messung von Datenqualitätskosten, www.iqinstitute-gmbh.de/blog/2012/12/06/messung-von-datenqualitatskosten/
4 Andreas Dietze / Thomas Fischer: Erfolgsfaktoren fürs Stammdaten-Management, www.rolandberger.de/medien/news/2013-10-10-rbsc-news-Erfolgsfaktoren_fuers_Stammdaten_Management.html
5 Rolf Scheuch: Datenqualität sichern – Stammdaten-Management braucht Ordnung; www.computerwoche.de/a/stammdaten-management-braucht-ordnung,2516260